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Abstract Contrary to the traditional dogma of being a
relatively invariable and quiescent organ lacking the
capability to regenerate, there is now widespread evidence
that the human brain harbors multipotent neural stem cells,
possibly throughout senescence. These cells can divide and
give rise to neuroectodermal progeny in vivo and are now
regarded as powerful prospective candidates for repairing
or enhancing the functional capability of neural tissue
in trauma or diseases associated with degeneration or
malperfusion. Hopes primarily rest upon techniques to
either recruit endogenous stem cells or to utilize exogenous
donor-derived material for transplantation. In the search for
suitable human cell sources, embryonic, fetal, and adult
stem cells appear highly controversial, as they are accom-
panied by various still-unresolved moral and legal chal-
lenges. Fascinatingly, however, recent reports indicate the
successful isolation and expansion of viable neural stem
cells from the rodent and human brain within a consider-
able postmortem interval, suggesting that postmortem
neural stem cells could potentially become an acceptable
alternative cellular resource. This article will provide a
brief overview about neural stem cells, their prominent

features, and prospects for a cellular therapy, and will
furthermore illuminate the cells in particular with respect
to their newly discovered postmortem provenience, their
advantage as a potential cell source, and several unfold-
ing forensic considerations. Also, important ethical, social,
and legal implications arising from this hitherto unprac-
ticed cellular harvest of brain tissue from the deceased
are outlined.
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Introduction

In recent years, the role of neural stem cells from the central
nervous system (CNS) of mammals including humans
became more prominent. As biologically fascinating en-
tities, neural stem cells have become milestones in
theoretical and applied medical research and stand in the
forefront of scientific efforts to utilize hitherto unthinkable
cellular techniques in therapy. They are ascribed to the so-
called tissue stem cells and their most commonly accepted
defining features [73, 87]—(1) to remain in an undiffer-
entiated state without a determined phenotype under certain
conditions, (2) to be able to divide and proliferate, and (3) to
be capable of de novo neurogenesis generating differen-
tiated offspring such as neurons, astroglia, and oligoden-
droglia upon induction (multipotency)—make neural stem
cells ideal candidates for many longed-for therapeutic
concepts that aim at repairing or enhancing the functional
attributes of neural tissue in trauma or disease.

There is widespread evidence that neural stem cells
persist in the adult CNS and continue to account for de
novo neurogenesis in the mature brain throughout the
entire life span. They represent specialized types of
competent cells residing in “neurogenic” or “silent”
regions of the brain that can generate neurons sponta-
neously and following induction via local signals. Neuro-
genesis requires specific constellations of particular
signaling cues to be properly administered to such cells

R. E. Feldmann Jr (*)
Department of Psychiatry, Division of Neurobiology,
The Johns Hopkins University Medical Institutions,
Children’s Medical and Surgical Center (CMSC), 9-115
1800 E. Jefferson Street,
Baltimore, MD 21287, USA
e-mail: robert_feldmann@gmx.li
Tel.: +49-6221-568910
Fax: +1-267-6975379

R. E. Feldmann Jr
Department of Physiology and Pathophysiology,
University of Heidelberg,
Im Neuenheimer Feld 326,
69120 Heidelberg, Germany

R. Mattern
Department of Forensic Medicine and Traffic Medicine,
University of Heidelberg,
Vossstrasse 2,
69115 Heidelberg, Germany



by their microenvironment in a spatiotemporally concerted
fashion. These signals may not only activate bona fide stem
cells to make new neurons, but may also stimulate pre-
existing neural progenitors, i.e., cells that are committed
into a specific neural cell line but have still retained the
ability to divide and proliferate, to engender “stem cell-
like” cells upon demand. It is thought that injury alone may
suffice to enliven neurogenesis. However, the capacity
of brain tissue for neurogenic response does exhibit a
significant regional heterogeneity. Thus, in silent regions
the injury-activated factors and resulting alterations in
local signaling (endogenous) may require additionally ap-
plied growth factors or grafts of competent cells (exoge-
nous) to effectively result in a stimulated neurogenesis.
Notwithstanding the fact that its precise regulatory mech-
anisms still remain mostly unknown, it is now clear that
the adult brain is indeed capable of adding or replacing
neurons that can assume functional roles in the tissue.

Neurogenesis and neural stem cells in adult mammals
including humans

Bona fide neural stem cells have been shown to reside in
the adult rodent and primate brain where they are thought
to be located in the spontaneously neurogenic hippocam-
pus and the subventricular zone [3, 4, 38, 94, 101];
however, stem cell-like cells and progenitors have been
identified in various other areas [10, 11, 93, 95, 102, 129,
133]. As nonhuman primates exhibit a particular phyloge-
netic proximity to humans with long life spans and
elaborate cognitive abilities, the conjecture suggested itself
that neurogenesis may also be of significance in the adult
human brain. And indeed, the human CNS, a tissue that
was previously believed to be incapable of originating new
neurons, does harbor multipotent neural stem cells and
progenitors in various areas and developmental stages. And
as many of the neurogenic areas of rodent and lower
primate brain seem to find their complement in humans, the
organ brain has apparently managed to preserve crucial
germinal tissue properties throughout its adult state during
human phylogenesis. Thus, neurogenesis in the adult
human brain has first been discovered to take place in
periventricular subependymal, cortical, and neocortical
areas [52, 104], and the hippocampus [31], which is
thought to harbor multipotent neural stem cells [59]. Stem
cells probably also reside in the cortex [6], (sub)ventricular
zone [49], and olfactory organ [72, 92]. Besides candidates
with multipotent developmental competence, cell lineages
with phenotypical restrictions have been found and isolated
from the adult human brain including biased oligodendro-
cyte and neuron-restricted progenitors from the ventricle-
lining parenchyma [113] and the hippocampus [114].
Taken together, all present reports and data concomitantly
support the existence of neural stem cells and restricted
progenitor cells with neurogenic and gliogenic potential in
the adult human CNS throughout senescence.

Prospects for a cellular therapy

The fate of neural stem cells can be directed to develop into
phenotypes of diverse tissue-specific target cells in vitro
and in vivo whereby the cells have revealed a fascinating
capacity to transdifferentiate into cell lineages not normally
found in the organ or tissue of residence, including
transgermal conversions into cells of different blastodermic
layers. This unanticipated plasticity of neural stem cells
was surprising as the CNS has always been regarded as
being the most imperturbable among adult tissues in terms
of proliferation and de novo generation of cells. Equally
interesting for practical purposes may be the observations
that neuroectodermal progeny can perhaps also be gen-
erated from other tissue stem cells such as the hematopoi-
etic system [30], skeletal muscle [112], bone marrow [81,
116], adipose tissue [115], or umbilical cord [82]. These
astonishing findings immediately encourage notions to
apply stem cells in therapy, but are equally reminiscent of
how vague our current knowledge of the mechanisms
underlying the developmental formation of neural stem
cells and progenitors still is. For investigations, neural stem
cells from the rodent and human CNS can be isolated,
expanded in serum-free culture, and propagated into
continuous stem cell lines using mitogenic growth factors
such as EGF and/or FGF-2. The as yet undifferentiated
cells can be further differentiated in vitro and induced to
generate neuroectodermal progeny, for example, via epi-
genetic factors added to the medium [1, 16, 78]. Separated
cell fractions of such a suspension may then have
significant therapeutic value. It has been shown, for
example, that the neuronal progeny of adult neural stem
cells can functionally reintegrate into existing networks
and influence its functions [17, 108, 125, 132], and it is
assumed that these adult generated neurons can replace
other neurons of the same class that have died [89]. But
except for, perhaps, in the adult olfactory bulb, where
newly recruited neurons may serve to balance apoptosis,
regenerate the tissue, and thus conserve its functional
discrimination capacity for life [18, 41], it seems unlikely
that a neuronal replacement strategy via endogenous de
novo neurogenesis in other adult brain regions such as
the hippocampus has evolved in response to a normal
wear and tear. Instead, it may have rather emerged to
rejuvenate key brain circuits as they are necessary to
maintain certain forms of learning and memory [51, 63,
75, 89, 90, 122]. Here, several reports suggest that newly
adult generated neurons can enhance synaptic plasticity
in the adult hippocampus [118, 124], which is thought to
directly affect learning and memory [64].

Thus, therapies that could utilize the features of neural
stem cells to proliferate, divide, and differentiate along
with their capacity to reconstruct neuronal circuitry hold
much promise for pathologies of the nervous system that
are characterized by dysfunction or loss of neurons or
glia cells. As (adult) neural stem cells can be genetically
modified and manipulated [26, 33], the envisioned ex-
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ploitation of their therapeutic potential now seems to be
imaginable and leaves hope for the cell’s subsequent
functional integration and contribution to cell replacement
and the repair or enhancement of tissue function. In add-
ition to their functions as neuronal network enhancers,
grafted cells could also be tailored to secrete neurochemi-
cally active substances such as growth factors, tissue
hormones, neuromodulators, transmitters, antibodies, or
even to remyelinate axons. An alternative approach to grafts
of exogenous cells may be the recruitment of endogenous
stem cells or progenitors [58, 103]. Various insults such as
ischemia, stroke, or trauma can stimulate their proliferation
in known neurogenic or nonneurogenic sites [20, 37, 43, 47,
98, 128, 139, 141]. Fascinatingly, the cells and/or their
progeny may then also migrate to affected lesion sites and
subsequently contribute to replenishing the defective tissue
in situ [7, 34, 48, 56, 85].

Eligible neural stem cell types for clinical applications

The roadmap to translating neural stem cells into clinical
settings, however, still remains to be a complex and
challenging task that must be cautiously prepared and
performed [69, 123]. Before a perennial transfer of neural
stem cells into clinical settings can be carried out, other
perhaps more principal problems relating to the prove-
nience of the cellular material to be used will have to be
addressed: the use of xenogenic cells from animals, for
example, remains problematic in humans. Although the
human brain appears to be an immunopriviledged site [13,
74] in which grafts may potentially survive longer than in

other organs and tissues, enough is still not known about its
long-term response as a host when accepting xenografts
and xenotransplants. Even larger than the issues of histo-
compatibility appear to be the concerns about possibly
transmittable xenozoonoses as they are thought to originate
from persistent pathogens such as viruses [45, 100]. It is
presently not fully understood, for example, if and how
endogenous retroviruses or other unknown and potentially
harmful classes constitute a health risk to humans. Fur-
thermore, the still-discussed controversy about whether
grafts from a nonhuman donor species from the animal
kingdom into the human CNS will entail an alteration of a
patient’s personality [44, 88] is additionally conducive to
the present difficulty of accurately assessing the general
risk and degree of severity of a postxenograft impairment
of the patient’s quality of life. An advantage of neural
stem cells gained from animals would certainly be the
high number of usable harvest sources, the quantity of
accessible material for transplantation, as well as their
immediate availability. However, on the side of graft
cells with a human origin, such as pluripotent human
embryonic stem cells, difficulties do likewise prevail as
research with them remains to be subject to considerable
ethical controversy and numerous international statutory
restrictions [5, 79], which will continue to exert delay on
their therapeutic application, even in the long run. On the
other hand, autologous sources of stem cells from the adult
human brain can not easily be well established from CNS
locations except for perhaps the olfactory neuroepithelium
[60], because of the expected serious consequences of an
operative invasion and the possible permanent damage to
the donor. The inherent complexities of standardizing the

Table 1 Comparison of different stem cell types with respect to their potential application in CNS therapy

+ + + − − −

Xenogenic SC High number of usable harvest sources Host immune-rejection
High quantity of accessible material for Xenozoonoses
transplantation
Immediate availability

Possible alteration of patient’s personality
(esp. if used in brain)

hESC Pluripotency Teratoma formation
Therapeutic cloning Ethically denounced
Unlimited self-renewal in vitro Subject to international statutory restrictions

hNSC, adult, autologous Immune-compatibility Isolation impractical from CNS without damage
to donorAge dependency

hUCB-SC Not ethically stigmatized Mesenchymal origin
Easy and standardized acquisition

hNSC, postmortem Not ethically stigmatized Short PMI desired
Readily accessible Significant education of donors and recipients
Vast harvest source Religious provisos
Easy and standardized acquisition

Listed are some of the most prominent assets and drawbacks. Clearly, however, none of the candidates have yet reached the final stage of
clinical approval for humans, despite considerable success in research and development with them. For hNSC postmortem, time will tell
what can be expected from them and how they will meet their demands
SC Stem cell, hESC human embryonic stem cell, hNSC human neural stem cell, hUCB-SC human umbilical cord blood stem cell, PMI
postmortem interval
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acquisition of neural stem cells, their treatment in vitro, and
the methods of transplantation to be employed have
therefore fuelled an ongoing quest for alternative cellular
sources that are not ethically denounced, well accessible,
and can readily be standardized. Yet, only a few sources
of human stem cells may be in agreement with these
requirements. New examples are human umbilical cord
blood stem cells, which are recently being debated [36, 86],
as well as neural stem cells/progenitors from the human
brain after death. Representing a hitherto unheeded poten-
tial human stem cell source, these latter cells may likewise
be consistent with the above demands and defy the
aforementioned difficulties. They could thus spur addi-
tional hopes for new avenues in neural stem cell therapy.
Table 1 summarizes the most important presently discussed
stem cell types with respect to their advantages and
disadvantages in application.

Neural stem cells/progenitors from the human brain
postmortem

Fascinatingly, neural stem cells and progenitors can be
extracted from diverse locations in the brain of deceased
mammals after death. In the past few years, their isolation
has been reported from the striatum, the forebrain sub-
ependymal zone, and the spinal chord of deceased rodents
[61, 62, 138], as well as the postmortem hippocampus,
SVZ [97], cortex [119], olfactory neuroepithelium [84,
109], and retina [54] of humans. Cells from brains of
various ages and both genders have been successfully
transferred into viable cultures with a postmortem delay of
up to 140 h. They can express various cell markers that
include nestin, vimentin, GFAP, DCX, Sox2, Ki-67,
nucleostemin or CD133 [54, 119], which allow their
well-defined identification. Interestingly, they can then be
propagated as neurospheres or as adherent monolayers in
vitro, clonally expanded [62, 119, 138], and induced to
differentiate in multipotency yielding the known neuroec-
todermal lineages, whereby the cultured ratio of emerging
neurons, astroglia, and oligodendrocytes has been observed
to change with the donor age [97, 138]. The principal
avenue to sustaining cells extracted from dead brain tissue
in vitro may not seem overly novel, as other human
postmortem derived cells have previously been shown to
obey culturing well [80], but for neural stem cells from the
brains of deceased rats it has unexpectedly been observed
that they exhibit the same properties with respect to the
formation of neurospheres, cellular proliferation, and
differentiation as those from living animals, if the initiation
of culture occurs within a certain postmortem interval, in
the case of adult rats 48 h. Within that window, distinct
differences in the density or distribution of nestin-positive
postmortem stem cells could not be observed around the
neurogenic lateral ventricle, suggesting that the stem cells
in that area may have survived and retained their cellular
properties within that time interval [138]. A storage
condition of 4C, rather than room temperature, was also
shown to dramatically prolong the neurogenic potential of

postmortem stem cells [61]. For applications at a later time,
human postmortem progenitors can be cryopreserved and
recultured for up to 30 population doublings with only
moderate losses in cell regeneration [97, 119].

With respect to a comparison of cultures from fetal,
neonatal, postnatal, and adult neural stem cells at identical
postmortem delays, differences in cellular response and
dynamics can be observed, whereupon fetal viz. the
“youngest” cells clearly show a higher proliferative
capacity [97, 119, 138]. It was also reported that it took
longer for cultures to reach their highest neurosphere
density if they had been derived from older animals [138].
Findings in human cultures confirm these observations,
suggesting that donor age is likely a determinant factor for
the proliferative as well as the developmental potential of
cultured postmortem progenitors [54, 97]. Electrophysio-
logical measurements on postmortem cortical progenitors
from in particular premature infants indicted to differentiate
in vitro suggested that their progeny, although from dead
tissue but apparently immature enough, can even give rise
to functional neurons under specific differentiation condi-
tions [119]. The responsibilities for these changes in the
cellular dynamics with age are proposed to partly lie within
the inherent differences in the neural stem cell’s capacity
for self-renewal, their length of telomeres and their ability
to respond to growth factors [138]. All of the above results
may imply that, although cultures have been established
from cells with a postmortem delay of up to 140 h (rodents)
as well as from human donor corpses with an age well
beyond 90 years [61, 109], best culture viability and thus
optimal requisites for therapeutic applications are likely to
be achieved with brain tissue specimens as young as
possible and postmortem intervals as short as possible.
Here, all neonatal and postneonatal infant deaths represent
a substantial reservoir that could become a valuable
resource for therapeutic applications in the future. For
practical purposes, novel forensic techniques are available
to estimate the postmortem interval at the time of tissue
harvest [117, 127].

The finding that tissue age and cell age and hence the age
of the donor emerge as clearly a dominant quality
parameter for cultivation, plasticity, and therapeutic
success with postmortem neural stem cells, besides the
health status of the donor, does not come unexpected.
There is evidence of increasing replicative impairment in
stem cells with progressing age yielding a decline in their
pools, changes in normal function, and the occurrence of
increased chances of differentiation or malignant transfor-
mations [99]. Including epigenetic modifications (reviewed
in [9, 110]), cellular DNA is under ongoing bout by
endogenous and exogenous genotoxic stress resulting in a
transient and accumulated damage of its integrity. Under
normal conditions, the stem cell as well as other cells
counteract against these incidents. With age, however, that
defense potency may decline [99]. Aging is then thought to
have negative effects on maturation, regenerative potential,
homing, and engraftment of various types of nonneural
stem cells [25, 29, 67, 131], and, most importantly, to
influence the behavior of neural stem cells and their
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progeny in the aging hippocampus [107], the potentially
most important cellular source of neural stem cells post-
mortem. Full comprehension of the potential causal
connection between age and genomic instability, however,
is only emerging these days [14, 39], but additionally
stimulated by the astonishing finding that embryonic stem
cells seem to exhibit a remarkable resistance against
genomic wobbling [57].

Neural stem cell survival in the dying brain?

The concept of culture viability after considerable time
intervals following the bodily demise appears quite
intriguing, even more so as processes of global ischemia
are known to cause irrevocable pathological lesions such as
necrosis, apoptosis, or severe inflammatory response in
brain tissue already immediately after onset [8, 28, 71]. The
reported data suggest, however, that neural stem cells and
progenitors specifically possess a strong survival potential
and a particular cellular resistance to ischemic and oxi-
dative stress conditions in the tissue as compared to
neurons. It has been shown that stem cells in particular are
well adapted to proliferating in a low-O2 environment.
Decreased oxygen accounts for distinct trophic and
proliferative effects in rodent central nervous precursors,
neural crest stem cells, as well as in human hematopoietic
stem cells in vitro [27, 83, 126]. Lowered oxygen cultures
clearly favor cell proliferation and survival, and result in a
significant increase in total cell numbers. Furthermore, they
appear to be necessary to maintain full pluripotency in
human embryonic stem cells [32]. In mouse hematopoietic
stem cells, various subsets are differently affected by
oxygen tension as well as differently selected in vitro by
hypoxia [22]. This may lead to the conclusion that stem
cells and progenitors respond differently to hypoxic
conditions, which was recently confirmed for human
stem cells [27], and that stem cells may exhibit a conserved
response toward reduced levels of oxygen around them
[83, 126]. Strikingly, also neurogenesis of adult neural stem
cells and synaptic plasticity are significantly potentiated by
global ischemic conditions in the brain [15, 121]. Yet, how
precisely and to what extent neural stem cells manage to
survive the quickly progressing conditions of irreversible
oxygen deficiency in the postmortem brain is presently not
fully understood. Several coexisting mechanisms may have
relevance here: First of all, stem cells and progenitors,
defined as being relatively quiescent and proliferating cells,
are lacking a highly active and sophisticated biochemical
apparatus as they are only awaiting molecular instructions
from their microenvironment to route them into dedicated
developmental fates such as division, migration, differen-
tiation, or apoptosis. This relative dormancy and low
metabolic rate may contribute to their survivability and
defer the cell’s demise during cessation of oxygen and
nutrient input upon death of the brain. Then, neural stem
cells from certain areas of the brain may also rely on
anaerobic metabolism and exhibit a particular resistance to
apoptotic cell death [111]. In cultured CNS stem cells, it

was suggested that a reduced apoptosis could be reflecting
upon the impact of lowered O2 levels [126]. It has further
been conjectured that stem cells in the brain can be
surrounded by specific other cells that can provide a
microenvironmental niche and can serve the stem cells as
aides for their maintenance [68, 96, 105]. Here, the rich
vasculature observed in neurogenic regions is thought to
act as such a niche by providing the stem cells with easier
access to the nutrients and other factors, and could thus
help to prolong their survival [96, 140]. Furthermore, the
effects of oxygen-dependent gene expression mechanisms
may offer a contribution. It is known that hypoxic con-
ditions can lead to changes in gene expression regulated via
the so-called hypoxia-inducible transcription factors (HIF),
which are usually not present in normoxic cells but emerge
upon a lack of oxygen sensed by the cell itself [76, 134].
Further downstream, these factors can induce transcrip-
tional pathways that can promote survival and proliferation
and thus make it tempting to speculate about the existence
of a pathway that specifically facilitates these in stem cells
[83]. Support for this hypothesis comes from observations
that the induced target genes are involved in energy
metabolism, apoptosis, erythropoiesis, as well as angio-
genesis [50, 106, 120, 134], and that specifically factors
and receptors of the latter appear to play a critical role in the
regulation of survival and self-renewal of stem cells. In
human hematopoietic stem cells, for example, an increase
in the secretion of the vascular endothelial growth factor
(VEGF) was shown under hypoxia [27]. VEGF is believed
to act on proliferation and survival in endothelial cells via
molecular pathways such as ERK, MAPK, PKB, PKC,
NOS, Akt, and FAK, as well as on an enhancement of the
cell’s responsiveness to angiogenic factors via upregula-
tion of its downstream signaling receptors. In addition,
VEGF has been shown to exert signaling and maintenance
functions in central nervous system neurons [91] and
neural stem cells under 24-h anoxia [77]. Interestingly,
hypoxia-induced VEGF levels of the brain were also
proposed to serve as an estimate basis for the postmortem
interval [127]. The above findings that the balance between
their survival, self-renewal, and differentiation may be
tightly regulated by intrinsic molecular oxygen sensing
mechanisms in various types of stem cells give reason to
the belief that similar events also rescue neural stem cells in
the dying brain whereby the locally emerging tissue anoxia
induces a balance shift toward their survival and
conservation of viability postmortem, at least for some
time. This assumption can probably still be upheld
although the in vitro oxygen reduction in most of the
above reports comprised a decreasing range from ambient
21% to more “physiological” tissue conditions of some-
where between 1 and 5%, which only inaccurately
resemble the true developing conditions of O2 deficiency
in the postmortem brain. And last, but not least, neural stem
cells from the adult hippocampus and the SVZ of rats were
recently shown to express hemoglobin [35], which leads to
the hypothesis that neural stem cells in the brain may
benefit from, if not specifically utilize, its known physi-
ological role in oxygen transport and detoxification of
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reactive oxygen species in their attempt to increase the
oxygen bioavailability in the dying tissue. More detailed
studies are expected in the near future to shed more light on
the molecular behavior of neural stem cells and progenitors
when struggling to survive the hostile conditions as they
arise in the dying brain.

The above reports concordantly show that the human
brain after death represents an interesting and valuable
potential source of neural stem cells for intervals of up to 2
days after cessation of bodily life signs that could meet the
above demands and eliminate the dependence on fetal or
embryonic sources and thus avoid serious ethical issues.
Until lead-off trials to introduce them into practice can be
made, however, more insights into the details of their
cellular behavior and specifically their survivability after
death, proliferative potential, cell-lineage dynamics, po-
tential to be directed toward neuronal phenotypes in a
controlled manner, and response to grafting conditions are
necessary. The latter must also include experience with the
functional recovery of animals in various models of CNS
injury and disease following the administration of the cells.
More proficiency and knowledge is also required with
respect to the assessment of a potential tissue donor’s
medical status. Although medical reports are usually on
hand in hospital settings or pathology to reveal important
information about the donor’s clinical antecedent, existing
drug therapies, or the cause of death, other variables—such
as the donor’s genetic and developmental background, and
the nature and extent of possibly underlying but unknown
diseases, in particular infectious or psychiatric processes at
or near the time of death—can neither be excluded easily, if
at all controlled. But they will likely exert a major influence
on the condition and “quality” of the harvested cells and
thus require further detailed investigation.

Forensic relevance of neural stem cells postmortem

With these still unresolved issues in mind, numerous
questions with forensic relevance open up. It appears very
probable, for example, that the tissue conditions evolving
in the postmortem brain will exert influence on the
biochemical machinery of its cells and thereby affect its
molecular units—transcriptome, proteome, or physiome.
Most recent data indicate that protein synthesis as well as
posttranslational protein modifications can be extremely
sensitive to the duration of the postmortem interval [19, 65,
66], which again may influence the intrinsic properties and
behavior of the cells. Furthermore, a postmortem delay has
been discovered to influence the outcome of brain cell-
marker detection via ongoing catabolic processes [46]. An
unswayed and reliable cell-marker detection, however, will
become imperative for the forensic investigation of post-
mortem tissue damages existing prior to a cell harvest [53].
Yet, what consequences may these findings have for
forensics aside from influencing cell-marker reliability? It
may be speculated that the above clearly postmortem

induced molecular changes in brain cells may also entail
similar effects in neural stem cells including in those that
still remain viable upon death at least for some time.
Moreover, it is conceivable that these changes could vary
specifically with the cause of death and perhaps even
establish a coherent causal interrelation with the latter. The
surviving stem cells may thereby “conserve” the tissue
pathology developing during death, whereas other non-
surviving cells are doomed to perish via autolysis over the
course of time. At a later time point then, this molecular
engram may possibly provide valuable insights into the
cellular history and tissue processes as they occurred
during the previous postmortem interval or during death.
Certainly, though, long postmortem intervals will slowly
wash out any existing incident-related cell feature speci-
ficity, and all cellular events will sooner or later terminate
in the common final path of tissue decay, yet it appears
fascinating that such specific cellular signature, if timely
and carefully measured, could potentially reflect ongoing
physiological, pharmacological, or pathological tissue
events in conjunction with the bodily demise. These
would probably include psychiatric processes at or near the
time of death, agonal or emotional events surrounding the
death [42], as much as preexisting diseases, trauma, or the
mentioned nature of death (intoxication, suffocation, etc.).
This again could shed more light on the molecular
determinants of the cause of death and time of death, two
prominent forensic issues of utmost importance for which
there presently exists, to our knowledge, no comparable
routine in forensic science. In addition, it would be ideal for
laboratory purposes to devise normalized cell culture
protocols as a methodological basis whereby the neural
stem cell’s pathology transfer from its time in the vital
organ into the postmortem viability could be read out in
culture and associated with novel forensic questions. Here,
challenging problems may include, for example, whether
duration and dynamics of agonal events as well as the onset
of death could specifically be observed in culture and if so,
what effects their different forms may have; how long
stressors may have been in effect in the vital phase
preceding death; how long molecular changes could be
observed before being superposed by autolytic processes;
or whether the antecedent of hypoxia in the brain such as
during emerging suffocation could be reconstructed and
derived from the observed mechanisms. In addition to this,
potential postmortem neural stem cell culture assays for
quality control may become essential for the cell’s
therapeutic applications in the future.

Ethical and legal implications and prerequisites
for the use of neural stem cells from the human brain
postmortem

The plans to utilize postmortem neural stem cells for
research and therapy will also enforce the consideration
and discussion of the ethical and legal conditions under

206



which the brain as a whole or the desired confined brain
tissue areas can be removed from a donor. Several novel
problems and questions occur here to the forensic scientist
and pathologist that will require urgent clarification. Three
of them shall be considered here.

First, as the human brain is widely and most comfortably
agreed upon to provide the best organic representative of a
domicile, if any, of human soul and spirit as well as the
origin of human dignity, it may necessitate a reformulation
of the ethical guidelines and legal provisions in society that
must underlie its planned application in therapy, taking the
existing diversity of religious and spiritual ideas into
account. This may be of importance for potential donors as
well as for the recipients of human brain-derived cells. For
“traditional” donors of organs and tissues, only the
donation and utilization of heart and eyes has sometimes
been seen as problematic so far. They have otherwise not
often denied their informed consent for giving organs such
as kidneys, liver, lungs, pancreas, skin, or meningeal and
cartilage tissues. The association of the brain with the
distinguishing features of the human entity and cognition,
however, may lead to a denial of consent for its donation.
As it could be argued that the decision to donate brain
tissue for transplantation may practically be influenced by
the exertion of constitutional rights for religious freedom
and practice, this has never been debated and dealt with
profoundly in society in the past, making such reservations
comprehensible. They will need to be addressed via novel
discussion and information initiatives on a broad scale that
must involve societal, political, and religious interest
communities as well as include the offering of individual
counseling. At this time, these debates appear to be the
exclusive means to bridge between individual decision
conflicts of donors or their families and the practical
approaches toward utilizing the hitherto unknown thera-
peutic value of the postmortem brain.

Second, it is presently unclear in many countries to what
extent brain tissue extraction for research and potential
applications will require approval from the donors at all.
Similar to any other organ donated for transplantation, the
conservation of the complete organ to be removed from the
cranium will undoubtedly demand the donor’s voluntary
disposition [40, 135, 136]. Whether the same also holds
true for small and only narrowly circumscribed singular
areas of parenchyma, such as the hippocampus, the ol-
factory bulb, or the subventricular zone, has not yet been
satisfactorily resolved. German advocates of a liberal
standpoint argue that tissue (and organ) extraction from the
dead can be performed devoid of consent from the donors
(in their lifetime) or their families (after their death)
because a higher object of legal protection (“Rechtsgut”)
such as the reconstitution of organ function or maintenance
of human life does principally prevail over a lower one, the
personal right for inviolacy and integrity of the dead [130]
(chapter 22, sect. 131, VIII, sect. 12, lines 1–8 and
footnote 20, p 1152). Furthermore, the utilization of
specifically marginal amounts of tissue material from a
human corpse on behalf of progress in medicine may be
socially adequate in a welfare state society, especially since

the corpse is often subject to autopsy through a forensic
scientist or pathologist anyway. In fact, it is part of the daily
routine of such investigators (in Germany) to take tissue
specimens and samples for further examination. But to our
knowledge, acceptable normative magnitudes have not yet
been established here. On the contrary, opponents counter
that an informed consent is always a prerequisite for corpse
probe sampling for any purpose as, unless required by law,
the right for self-determination and the postmortem per-
sonal rights of the decedents and their families including
the percept for inviolacy and integrity of the dead oppose
the illegitimate “coercive organ extraction” and functiona-
lization of the defunct as a freely available biological
resource [130] (chapter 22, sect. 131, VIII, sect. 12, lines
9–17 and footnote 21, p 1152). And this may even conjoin
more importance for the organ brain, as outlined above.
Should one agree the brain tissue specimen in question and
the research procedures applied to them to be in conformity
with the definitions set forth in the World Medical
Association Declaration of Helsinki and the Council of
Europe’s Convention on Human Rights and Biomedicine,
then the obtainment of consent would be in accordance
with their provisions [24, 137]. Specifically for Germany,
the execution of such rights has been defended as being a
justifiable and thus preferred method [70]; the same is true
for the United Kingdom [12] and the United States [2, 21].
In practice, however, it must clearly be determined how the
demanded attempts to request permission for tissue sam-
pling from the deceased’s families can obey good ethical
standards, especially during times when the relatives can
still be in bereavement [23, 55]. With that in mind, the
relatively short postmortem interval for a workable brain
tissue extraction further complicates the situation, espe-
cially for newborns and infants.

Third (and last), it is presently unclear (e.g. in
Germany) if even approaching relatives to inquire about
a permission itself is not legally problematic due to
possibly occurring direct conflicts with existing data
protection laws (Bundesdatenschutzgesetz BDSG, 2003,
in Germany). In contrast to the pathologist, who may often
be in contact with the family and relatives, the forensic
investigator mostly receives his investigation orders from
the state prosecuting attorney’s office and may not
necessarily have to do with the relatives at all. But even
if he does, he may not legally be allowed to use or transmit
contact data for the purpose of requesting information on
issues that are neither authorized nor covered by his work
assignment. The data are thus protected by the law,
emphasize data protection activists. Proponents, on the
other hand, argue that a clear-cut adjudication on whether
data protection laws even come into play at this point is still
pending. Their objections are that the data which the
requesting forensic investigator will instrumentalize to
establish contact certainly used to be personal data but is
now, in the case of a deceased, not attributable to a living
person any more. But exactly the living person is the
foundation of data protection laws and the justifying
subject under its protection. Dead persons are not
considered persons any more and thus cannot be protected.
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Yet, even under the existing (German) legal regulations,
personal data may eventually become legally transmittable
(for other purposes) insofar as the transmission and usage
will be essential to ensure the legitimate interests of the
responsible party (forensics) and does not interfere with
the interests of the involved relatives worth protecting.
Legitimate interests of the forensic scientist, even being
those of the general public, could be, for example, the
conduction of research and subsequent development of
therapeutic applications from the harvested tissue speci-
men in question. In addition, transplantation laws (Trans-
plantationsgesetz TPG, 1997 in Germany) and the code of
criminal procedure (Strafprozessordnung StPO, 2001 in
Germany) may allow the transmission of personal data and
the contacting of the relatives in Germany, to wit, if it can
be assumed that the deceased possesses transplantable
tissues or organs that may be of relevance in medicine or
for the purpose of research. At this point, also the
differentiation between various types of interests such as
commercial, research, or therapeutic kinds may become
relevant. Interests of the involved families, however,
include the basic right of informational self-determination,
the protection against violation of reverence as part of
a constitutional personal right, or the safeguard from
infringement of the quietude of the dead. In legal disputes,
these complex and opposing interest configurations will
have to be assessed and weighed against one another.
Presently, however, it appears that the statutory situation in
various countries including members of the European
Union (including Germany) or the United States are not yet
fully adapted to these novel conditions and will therefore
require urgent legislative handling and clarification.

All of the above outlined issues, to our knowledge,
have not yet been profoundly addressed and resolved,
especially not with respect to the organ brain after death,
which will only now be seen as exhibiting a hitherto
unknown therapeutic value. Considering the rapid pace
of progress in worldwide biomedical science, a prompt
pursuit is thus strongly advised.
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